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A B S T R A C T

Tractography is an important tool for the in vivo analysis of brain connectivity based on diffusion MRI data, but it
also has well-known limitations in false positives and negatives for the faithful reconstruction of neuroanatomy.
These problems persist even in the presence of strong anatomical priors in the form of multiple region of interests
(ROIs) to constrain the trajectories of fiber tractography. In this work, we propose a novel track filtering method
by leveraging the groupwise consistency of fiber bundles that naturally exists across subjects. We first formalize
our groupwise concept with a flexible definition that characterizes the consistency of a track with respect to other
group members based on three important aspects: degree, affinity, and proximity. An iterative algorithm is then
developed to dynamically update the localized consistency measure of all streamlines via message passing from a
reference set, which then informs the pruning of outlier points from each streamline. In our experiments, we
successfully applied our method to diffusion imaging data of varying resolutions from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and Human Connectome Project (HCP) for the consistent reconstruction of three
important fiber bundles in human brain: the fornix, locus coeruleus pathways, and corticospinal tract. Both
qualitative evaluations and quantitative comparisons showed that our method achieved significant improvement
in enhancing the anatomical fidelity of fiber bundles.
1. Introduction

The advent of diffusion magnetic resonance imaging (dMRI) (Basser
et al., 1994) allows the study of structural connectivity in the human
brain in vivo. To noninvasively reveal and study the trajectories of white
matter pathways of human brain based on dMRI, tractography is a central
approach (Basser et al., 2000; Mori et al., 1999) and has been successfully
applied in neuroimaging studies of various brain disorders. On the other
hand, recent validation studies (Aydogan et al., 2018; Maier-Hein et al.,
2017) showed tractography techniques had critical limitations in the
reliable reconstruction of neuroanatomy. To this end, we propose in this
paper a novel track filtering algorithm for the robust reconstruction of
fiber bundles with groupwise consistency. We will demonstrate that the
groupwise consistency is able to compensate for limited anatomical
knowledge in tractography-based fiber bundle reconstruction.

Fiber bundles can be generated by either deterministic (Basser et al.,
2000; Mori et al., 1999) or probabilistic tractography techniques (Beh-
rens et al., 2007; Descoteaux et al., 2009; Tournier et al., 2019). To
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remove artifacts from tractography results, various approaches have been
proposed for the filtering of fiber tracks with the inclusion of different
degree of anatomical priors. For the filtering of whole brain tractograms,
several methods have been developed that examine how well the trac-
togram fits the dMRI data or the fiber orientation models computed from
the dMRI data and remove streamlines with low data fidelity (Daducci
et al., 2015; Pestilli et al., 2014; Smith et al., 2015). Clustering techniques
(Guevara et al., 2011; O’Donnell and Westin, 2007) for the reconstruc-
tion of major fiber bundles are most related to our current work. By
taking advantages of the geometric similarity of pathways, clustering
algorithms can be applied to fiber tracks from individual subjects or
multiple subjects warped into a common space. Recently, this approach
was applied to the whole brain tractography of 100 HCP subjects for the
extraction of common clusters and construction of white matter atlases,
which were then applied to the whole brain tractogram of individual
subjects for bundle reconstruction (Zhang et al., 2018). This approach is
still largely data-driven and anatomical labels were typically assigned
after the generation of clusters (O’Donnell and Westin, 2007). For fiber
s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such,
DNI and/or provided data but did not participate in analysis or writing of this

c.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

2020

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:yshi@loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117147&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.117147
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2020.117147


Fig. 1. An illustration of the proposed groupwise track filtering framework. All
fiber bundles from N subjects will first be nonlinearly warped to a common
space such as the MNI152 atlas. Outlier points (colored in yellow) will be
iteratively pruned based on the consistency measure obtained via messages
passed from tracks in a reference set, which is updated dynamically. Once the
pruning process is completed, the same pruning operations are applied to points
on the original tracks to obtain the filtered fiber bundles.
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bundle reconstruction, the most conventional type of approach uses
strong anatomical priors in the form of region-of-interests (ROIs) to in-
crease the validity of tractography-based solutions (Catani et al., 2002;
Wakana et al., 2004). This method is most suitable for the reconstruction
of fiber bundles with well characterized anatomy (Tang et al., 2018).
Based on this approach, a white matter query language (WMQL) was
developed as an automated framework for ROI-based bundle segmenta-
tion (Wassermann et al., 2016).

Even with the use of strong ROI-based anatomical priors, however,
residual artifacts still frequently occur in the reconstructed fiber bundles
(Rheault et al., 2020). This is because we usually can only provide a small
number of ROIs to constrain the fiber trajectories due to either incom-
plete anatomical knowledge or the high cost of generating extensive
anatomical labels. To remove outliers from ROI-based reconstruction of
fiber bundles, track filtering methods based on geometric distances
(Garyfallidis et al., 2012) or topological analysis (Aydogan and Shi,
2015) were proposed. More recently, topographic regularity was pro-
posed as a novel criterion for the removal of outlier streamlines (Wang
et al., 2018). A cluster confidence index (CCI) was introduced to model
the geometric similarity of neighboring tracks and remove outliers
(Jordan et al., 2018). One common theme of these methods is that they
assume a certain level of geometric or topographic regularity at the in-
dividual level to compensate for the insufficiency of anatomical con-
straints, but consistency across subjects is not considered. In addition, the
filtering process typically operates at the level of whole streamlines.

In this paper, we develop a novel track filtering method for fiber
bundles by incorporating regularity from the perspective of groupwise
consistency. In essence, our method will filter the fiber bundles from a
group of subjects simultaneously and take advantage of the regularity
that naturally exists at the group level to remove randomly occurring
errors in each subject, thus compensating for the gaps in anatomical
priors. Compared to previous track filtering methods for fiber bundles,
there are several unique aspects in our work. First, we develop an intu-
itive definition of groupwise consistency that provides flexible controls
over the level of desired consistency across the group from three different
aspects: degree, affinity, and proximity. Second, we measure the groupwise
consistency at each point on a streamline via an iterative message passing
mechanism from a set of carefully constructed reference set of fibers.
Third, we perform the filtering at the local level by iteratively pruning
away inconsistent portion of each streamline instead of making a binary
decision as in many previous works. This is one of the unique aspects of
our method that not only allows the elimination of whole streamlines
with defects but also the extraction of streamline segments reproducible
across subjects, which can be highly valuable when precise end ROIs
cannot be properly defined for a fiber bundle. In our experiments, we will
demonstrate this property enables the reconstruction of anatomically
meaningful and consistent sub-bundle structures from fiber bundles
dominated by highly spurious outliers. We will also show the proposed
method can be easily applied to perform conventional filtering tasks that
either accept or reject a track from a bundle.

The rest of the paper is organized as follows. In section 2, we propose
our definition of groupwise consistency and develop the numerical al-
gorithm to implement this concept to achieve track filtering at the group
level. In section 3, we present experimental results on the reconstruction
of three important bundles: fornix, locus coeruleus (LC) pathways, and
the corticospinal tract (CST) to demonstrate the efficacy of our method
over conventional filtering methods. Finally, discussions and conclusions
are made in section 4.

2. Method

In this section, we develop the proposed track filtering algorithm
based on a novel and flexible definition of groupwise consistency across
2

fiber bundles. The main steps of our method are illustrated in Fig. 1. After
nonlinearly warping all fiber bundles into a common space, we itera-
tively estimate the level of groupwise consistency at each point on each
streamline and conduct the pruning of outlier points to enhance the
overall consistency across subjects. Streamlines will be rejected or
refined during the filtering process for the generation of the final outputs.
2.1. Definition

We denote a set of input fiber bundles from N subjects as _F ¼ f _F1;
_F2; :::; _FNg, where _Fn is the input bundle from the n-th subject. To
perform the proposed groupwise filtering, these fiber bundles are first co-
registered into a common coordinate space as illustrated in Fig. 1 and
denoted as F ¼ fF1; F2; :::; FN g. For practical implementation, we
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typically warp all fiber bundles into the common MNI152 space (Fonov
et al., 2011) using the nonlinear registration computed by the ANTS
software (Avants et al., 2008). Each streamline in F is represented as a
polyline f ¼ fxðlÞ j l 2 ½1; S�g with S points in R3. For groupwise
filtering, our goal is to estimate a subset of the streamline f , which we

denote as bf ¼ fxðlÞ j l 2 ½la; lb�g, that are consistent with streamlines
from other subjects. More specifically, we consider the streamline

segment, bf⊆f , as groupwise consistent if all points in bf are close to
streamlines from a certain number of other subjects in F. Formally, we

define the conditions GðL;K; ξÞ for bf ; a portion of a streamline f , to have
groupwise consistency as follows:

� Degree (L): the minimum length requirement of the sub-streamline

structure bf that are consistent to streamlines from other subjects.
� Affinity (K): the number of subjects in the group that contain
streamlines to which f shares consistency.

� Proximity (ξ): a distance parameter reflecting the extent of closeness

between bf and streamlines from other subjects.

This definition is flexible in several aspects. The first parameter L
specifies the minimum length or proportion of a streamline that needs to
be consistent with tracks of other subjects. This will avoid the inclusion of
overly short segments that do not reflect the connectivity of the fiber
bundle. For fiber bundles with well-defined end ROIs, setting a relatively
high degree parameter L will ensure a valid representation of the overall
bundle similar to conventional filtering approaches can be obtained. The
second parameter K can be considered as an affinity measure that con-
trols the trade-off between inter-subject consistency and individual
variability. The distance parameter ξ determines the closeness when
evaluating the consistency among fiber trajectories. Taken together,
these conditions characterize groupwise consistency locally at the sub-
streamline level. On the contrary, previous filtering methods often first
perform fiber clustering and make a decision about each cluster. Thus,
the proposed groupwise definition allows the development of filtering
algorithms that can measure groupwise consistency and perform the
pruning/filtering at a higher resolution than previous methods.
2.2. Algorithmic details

To computationally realize this flexible definition of groupwise con-

sistency for fiber bundles, we essentially need to estimate a fraction bf of
each streamline f that is consistent with streamlines from K other sub-

jects in the group. Since this portion bf is unknown, the K subjects
contributing to its groupwise consistency cannot be determined a priori.
To tackle this challenge, we develop an iterative algorithm that is
composed of consistency estimation and pruning of inconsistent points.
At each iteration, a reference set is constructed and dynamically updated
for each streamline and a message passing mechanism is developed to
estimate the level of consistency at each point, which then guides the
pruning process to remove inconsistent portion of the streamline.

1) Reference Set: For any pruned or unpruned streamline f t at the t-th (t
¼ 0, 1, …) iteration, which equals the input streamline f at t ¼ 0, we
construct a subject specific reference set Rt

k ¼ frmk
�� m ¼ 1; ::: ; Mg

composed of the M most similar streamlines from the fiber bundle Fk
of the k-th subject. In most scenarios, the fiber bundle Fk is saturated

with streamlines sharing similar trajectory and a subsampled one ~F
t
k

would be enough to be used for reference researching. Practically, we
offer an optional parameter, subsampling rate r, to control the per-
centage of streamlines stochastically selected from Fk for reference set
3

construction. The parameter r provides a trade-off between accuracy
and efficiency. Low subsampling rate could effectively reduce the
computational burden, while the overly subsampled fiber bundle may
underrepresent the original trajectories. We used the fast fiber k-NN
algorithm proposed in (Wang and Shi, 2019) to efficiently construct
the reference set. Given a streamline f t and a searching scope, e.g. Fk
or ~F

t
k, the fast fiber k-NN algorithm ranks each streamline in the scope

according to its similarity to f t . Then the top-M streamlines are
extracted to form the subject specific reference set.

To meet the affinity criterion that K subjects will be needed to define
the groupwise consistency, we build the groupwise reference set G t of
each track f t at the t-th iteration as follows:

G tðf tÞ ¼ argmin R ’ ⊆ R t ; jR ’j¼K

X
Rtk 2 R ’

X
rmk 2 Rtk

dmc
�
f t; rmk

�
;

where R t ¼ fRt
k

�� k ¼ 1; … ; N � 1g is the collection of all subject
specific reference sets and dmcð�; �Þ is the mean closest point distance
(Corouge et al., 2004) depicting the streamline-wise distance. Specif-
ically, this distance measure between two streamlines f t and rmk 2 Fk is
defined as:

dmc
�
f t; rmk

� ¼ 1
jf tj

X
x 2 f t

min
y 2 rmk

x � y;

where
��f t �� is the number of points on f t . The groupwise reference set

G tðf tÞ consists of the top K subject specific reference sets in terms of the
total distance between f t and the reference tracks.

2) Message Passing: Using the groupwise reference set G tðf tÞ at the
current iteration, we will define a consistency measure at each point
on f t to enable localized track filtering. Inspired by the message
passing mechanism in graph-based optimization (Wainwright et al.,
2005), we will quantify the consistency level of each point by
measuring the messages that it received from the reference set.

Given any point x 2 f t , we denote a neighborhood point set N ¼
fniji ¼ 1;…; jN jg, where ni is the closest point to the i-th streamline in
the reference set G tðf tÞ . Note that the total number of points in N equals
the number of reference streamlines in G tðf tÞ , i.e., M � K. The message

the i-th neighborhood point sends to x is defined as e�
x � n2

i
σ2 , which decays

exponentially as the distance between these two points increases. Note
the distance x � ni is normalized with respect to the distance scale
parameter σ which controls the quantitative conversion from point-wise
distance to point-wise affinity. By summing up the messages from all
neighboring points, we obtain the consistency measure at x as:

pðxÞ ¼
XjN j

i ¼ 1

e�
x � ni

2

σ2 :

This message passing process is carried out at all points on f t to define
the localized consistency measure on the streamline. An illustration of
the consistency measure calculation based on message passing is shown
in Fig. 2. From the final consistency measure plotted in Fig. 2 (b), we can
see that the local variation of the consistency level has been successfully
captured, which will then inform the pruning process for the removal of
outlier in fiber bundles.

We consider any point on a streamline with its consistency measure
below THD as an outlier. To preserve the continuity of each streamline
during the filtering process, we filter them at each iteration by pruning
the outlier points at both ends. For a streamline f t , we obtain the filtered



Fig. 2. Calculation of localized consistency measures on a track based on message passing. (a) The points on the track under consideration (cyan) are plotted as gray
dots. The points on the three reference tracks are plotted in red, green, and blue, respectively. (b) Each point on the track under consideration is color-coded according
to the consistency measure from messages they receive from neighboring tracks. The consistency measures range from 0 to 3 as 3 reference tracks are used in
this example.

3) Track Pruning: After the estimation of the groupwise consistency measure for all the tracks from all subjects, we filter the fiber tracks via a pruning process. We denote
the set of filtered bundles from all subjects as F t at the t-th iteration and pðF tÞ as the distribution of the consistency measure of the points on all the fiber bundles in
F t . At the t-th iteration, we first calculate the mean μtp and standard deviation σtp of pðF tÞ to determine the filtering threshold at the group level:

THD ¼ μtp � 2σtp :
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one f tþ1 for the next iteration after removing its outlier points.
A filtered track will be rejected if it fails to meet the minimum degree

of consistency in GðL;K; ξÞ, i.e., a sufficient amount of points after the
pruning. We thus employ a length constraint Lmin to realize this condition
on the minimum degree of consistency. In our algorithm, the Lmin is a
ratio parameter, indicating that minimum ratio of the length of the
pruned track to the overall mean streamline length. The mean streamline
length, the average number of points on streamlines in input fiber bun-
dles, characteristics the streamline length able to reflect meaningful
connectome. A higher Lmin requires the filtering result to preserve more
end-to-end interconnectivity. Besides, note that outlier points may exist
in the interior of the track, which could result in local inconsistency. We
constrain such interior local inconsistency by using another ratio
parameter Lmax controlling the maximum number of outlier points that
are tolerable in the filtered track. The filtered track will be rejected if the
ratio of outlier point number to the overall mean streamline length
exceed Lmax. With a small Lmax, the filtering process would be sensitive to
the interior local outliers. Together these two parameters will control the
filtered track to have enough degree of consistency while keeping the
number of residual outlier points small.

4) Proximity Estimation and Termination Criterion: Consider that the prox-

imity (ξ) constraint locally requires that the filtering result bf and its
counterparts, white matter trajectories from other subjects, have
certain extent of closeness. We use the average distance between the
pruned streamline and its references to quantitatively reflect the
group-wise closeness as follow:
4

dmeanðf tÞ¼ 1
K �M

X
m t t t

dmc
�
f t; rmk

�
:

rk 2 Rk ; Rk2G

The iterative process would not terminate until all pruned streamlines
reach the proximity requirement. Thus, the overall groupwise inconsis-
tency, ξt ¼ max

f2Fi ; Fi2F t
dmeanðf tÞ, is used as the stopping indicator. The

pruning process would terminate once ξt is below a certain threshold. δ:
The overall implementation of our groupwise filtering algorithm is

summarized in Algorithm 1. The operations ReferenceSet,MessagePassing,
TrackPruning, and ProximityEstimation implement the main steps
described above. Once the filtering process stops, the same pruning op-
erations are applied to corresponding points in the original fiber bundles
in the last step of the algorithm, which produces the filtered fiber bundles
bF for all the subjects in the original space. If filtering at the whole
streamline level is desired to have complete end-to-end connections, our
method can also recover the pruned portion and generate whole-
streamline filtering results for tracks that are retained after the group-
wise filtering process, i.e., tracks including a portion meeting the
groupwise consistency criteria.

While there are multiple parameters in the proposed algorithm, many
of the parameters can be set a priori and perform robustly across different
track filtering tasks. For all our experiments, we set r ¼ 0.2,M ¼ 3, σ ¼ 8
mm, and δ ¼ 3 mm. The rest of the parameters about groupwise con-
sistency such as affinity K, anatomical length constraint Lmin, and local
inconsistency tolerance Lmax can be adjusted in different filtering sce-
narios. We will demonstrate the intuitive ways of parameter setting and
corresponding filtering results next in the experiments.
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Algorithm 1. Groupwise Track Filtering Algorithm
3. Experimental results

In this section, we present experimental results to demonstrate the
proposed algorithm on the groupwise filtering and reconstruction of
important fiber bundles in human brain. We applied our method to
diffusion MRI (dMRI) data from both the second phase of Alzheimer’s
Disease Neuroimaging Initiative (ADNI2) (Mueller et al., 2005) and
Human Connectome Project (HCP) (Van Essen et al., 2012). With the aim
of developing biomarkers for the early detection of Alzheimer’s disease
(AD), the ADNI enrolls subjects ranging from 55 to 90 years old. The
study cohort consists of varying disease stages: cognitively normal (CN),
early mild cognitive impairment (EMCI), late mild cognitive impairment
(LMCI), and AD. The ADNI2 dMRI data used in our experiment were
acquired on 3-T GE Medical Systems scanners. Each diffusion MRI scan
contains 59 axial slices reconstructed to 256�256 matrix with voxel size
2.7�2.7�2.7 mm3. Each scan includes 46 separate image volumes: 5
T2-weighted b0 images and 41 diffusion-weighted images (b ¼ 1000
s/mm2). The HCP enrolls healthy young adults in the age range of 22–35
years. The advanced multi-shell diffusion MRI data of HCP was acquired
on a 3T Siemens Connectome Skyra scanner. The dMRI data of HCP has
an isotropic spatial resolution of 1.25�1.25�1.25 mm3 from 270
gradient directions over three b-values (b ¼ 1000, 2000, 3000 s/mm2)
(Sotiropoulos et al., 2013). In our experiments, we used the preprocessed
dMRI data from the 500-Subject release of HCP. For both HCP and ADNI2
dMRI data, we first reconstructed the fiber orientation distribution (FOD)
(Tran and Shi, 2015) and then ran FOD-based tractography in MRtrix
(Tournier et al., 2019) for ROI-based bundle reconstruction. We used the
iFOD1 algorithm in MRtrix for FOD-based probabilistic tractography. As
5

shown in previous validation studies (Aydogan et al., 2018), key pa-
rameters including step_size, angle, and cutoff_threshold of the FOD at each
step of the tractography algorithm all contribute to the regularity of the
fiber streamlines. For each fiber bundle, we picked these tractography
parameters to ensure a sufficiently complete representation of these
bundles are reconstructed according to our experience.

3.1. Fornix bundle reconstruction from ADNI2 data

In the first experiment, we applied our method for the groupwise
reconstruction of the fornix bundle of 40 subjects from ADNI2 including
10 subjects each from groups with Alzheimer’s disease (AD), early mild
cognitive impairment (EMCI), late mild cognitive impairment (LMCI),
and cognitively normal (CN). As an important white matter tract of the
limbic system, the fornix bundle was shown to be sensitive to the early
neurodegeneration in the hippocampus (Mielke et al., 2012). While the
fornix anatomy is relatively well described in neuroanatomy (Nieu-
wenhuys et al., 2008), the limited resolution in clinical dMRI data does
not provide sufficient information to accurately identify small ROIs such
as the mammillary body that receives fornix projection.

In our experiment, we first manually delineated several ROIs in the
T1-weighted MRI of the MNI152 atlas and then registered them to the
subject space as the anatomical constraints for fornix reconstruction. As
shown in Fig. 3, the seed ROI (in green) and inclusion ROI (in red) cor-
responding to the two ends of fornix body were depicted on the axial and
coronal slices respectively. The exclusion ROIs (in blue) were drawn on
the sagittal slices to avoid the tracking artifacts resulting from the
entanglement of the fornix and neighboring tracts such as the anterior



Fig. 3. ROIs used for fornix bundle reconstruction are plotted against the MNI152 T1 image. (a) A sagittal view of the manually drawn seed (green), inclusion (red),
and exclusion (blue) ROIs. (b) An axial view of the manually draw exclusion ROIs. Note they do not overlap with the seed and inclusion ROIs.

Fig. 4. The iterative pruning results with different proximity requirement of the fornix bundle of an EMCI subject. The original bundle, and the filtering outcomes with
proximity threshold δ ¼ 20 mm, 7 mm, 3 mm, and 2 mm, corresponding to the results after 1, 2, 5, and 10 iterations of filtering, are displayed from left to right,
respectively.
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commissure. To further reduce false positives in bundle reconstruction,
the hippocampus masks and cortical regions produced by FreeSurfer
(Fischl et al., 2002) were used as inclusion and exclusion ROIs for
FOD-based tractography, respectively. Other related tractography pa-
rameters are as follows: step_size ¼ 0.2 mm, angle ¼ 6�, and cutoff_thres-
hold ¼ 0.025. For each subject, we generated 1000 streamlines for the
fornix bundle.

As shown in Fig. 5, the reconstructed fiber bundles contain a large
number of outliers. With the following key parameters in our method: K
¼ 24, Lmin ¼ 0.6, and Lmax ¼ 0.05, our method successfully removed
outlier portion of the tracks and produced a consistent reconstruction of
the fornix body. Note that the affinity K ¼ 24 is 60% of the total number
of subjects in the dataset. The pruning results with different termination
criteria are demonstrated in Fig. 4, where the filtered bundle of a
representative subject was plotted. At the convergence of the algorithm,
the reconstructed fiber bundles were obtained and shown in Fig. 5. These
results demonstrate that our method is capable of extracting anatomi-
cally meaningful and consistent fiber bundles even from inputs domi-
nated by such highly spurious outliers used in this experiment.

The subjects involved in this experiment are from multiple groups in
terms of clinical diagnosis of AD. This results in the potential pathological
heterogeneity in the dataset of reconstructed fornix bundle. The affinity
parameter K, which controls the scope of groupwise consistency in
population, would have the most significant impact on the filtering re-
sults. We examined the impact of the affinity parameter K qualitatively.
By fixing other parameters, we varied the parameter K in groupwise
filtering. The reconstruction results of a representative subject are shown
in Fig. 6. We can see residual outliers can still be seen at relatively smaller
6

value (K ¼ 8 or 16 which is 20% and 40% of total number of subjects).
With the increase of K, results become more constrained and lead to a
reconstruction that underrepresents the fornix. This is especially obvious
when K was chosen as 39, which is the maximum value for a group of 40
subjects. This example also demonstrates that the affinity parameter K is
robust. Changing K in the range from 16 to 32 results in little geometrical
differences in the final filtering results. The observations conform to the
expectation that varying the parameter K allows the trade-off between
inter-subject consistency and individual variability. It is also detectable
in Fig. 5, that the general morphological characters of each fornix bundle
are preserved.
3.2. Locus coeruleus pathway and atlas from HCP data

In the updated Braak staging of tau pathology (Braak et al., 2011), the
locus coeruleus (LC) nuclei in brainstem was considered the earliest re-
gion with tau tangles, one of the defining hallmarks of AD. There is thus
increasing interests in studying the LC morphology and connectivity
(Clewett et al., 2016). In vivo reconstruction of LC pathways in human
brains, however, has been relatively under studied. In this experiment,
we applied our method to obtain groupwise consistent reconstruction of
LC pathways to the medial temporal lobe (MTL), which corresponds to
Braak stage I after the LC (Braak stage 0). A robust and consistent
reconstruction of the LC pathways could facilitate the investigation of the
propagation of tau pathology along fiber pathways (Gibbons et al., 2019)
and improve our understanding about the early development of AD.

We used the dMRI data from 50 HCP subjects in this experiment to
demonstrate the consistent reconstruction of LC pathways on the right



Fig. 5. Input and reconstructed fornix bundles from ADNI2 subjects. Each sub-figure from (a) to (d) shows three input (top row) and filtered (bottom row) bundles
from the AD, LMCI, EMCI, and CN group, respectively.

Fig. 6. The filtering results of the same EMCI subject in Fig. 4 with different choices of the affinity parameter K. The input fiber bundle, and the filtered bundle with K
¼ 8, 16, 24, 32 and 39, are shown from left to right, respectively.

Fig. 7. The impact of the parameter Lmax on track filtering performance. (a) Input LC pathway of an HCP subject. Spurious tracks were highlighted by the ellipsoid and
arrow. (b) Filtered LC pathways with varying Lmax ¼ 0.05, 0.1, 0.3, and 0.5, from left to right, respectively.

Y. Xia, Y. Shi NeuroImage 221 (2020) 117147
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Fig. 8. Results of filtering the right LC bundle from five HCP subjects. Top row: input LC pathways; Bottom row: filtered bundles.

Fig. 9. A probabilistic atlas of the right LC bundle is plotted on 8 coronal slices in the MNI152 space. (a) indicates the zoom-in region (within the red box) on one
coronal slice. The corresponding regions on different coronal slices are magnified and displayed in (b).
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hemisphere of these subjects. Two ROIs were used in the tractography-
based reconstruction. The first ROI was the right LC mask nonlinearly
warped from an atlas in the MNI152 space (Keren et al., 2009). This ROI
was used as the seed region in tractography. The second ROI was the
amygdala mask produced by FreeSurfer (Fischl et al., 2002) and used as
an inclusion ROI. Parameter settings for FOD-based probabilistic trac-
tography are listed as follows: step_size ¼ 0.125 mm, angle ¼ 4.5�, and
cutoff_threshold ¼ 0.05. Each input LC bundle contains around 1000
streamlines.

As shown in Fig. 8, while the ROIs played an important role in con-
straining the trajectories of the fiber pathways, the tractography results
still tend to be contaminated by erroneous outliers varying from subject
to subject. Parameters used in our method were chosen as Lmin ¼
0.8, Lmax ¼ 0.05, and K ¼ 49. Compared to the filtering implementation
for fornix bundle, we can choose stricter constraints on affinity and
consistency in this experiment because of the high anatomical homoge-
neity across HCP subjects. Constrained only by the ROIs at the two ends,
the original LC pathway contains many streamlines with interior false
8

positive portions (pointed and circled out in Fig. 7 (a)). We also show
how the maximum outlier length Lmax affects the filtering result. As
shown in Fig. 7, cleaner reconstruction of the LC pathway can be ob-
tained with the decrease of the Lmax. When the Lmax is small enough, e.g.
less than 0.1, its influence on filtering results almost vanishes. The final
reconstruction results are shown in Fig. 8, where clean and consistent
reconstruction of the LC pathways have been successfully obtained.
These results match very well with the trajectories of the dorsal norad-
renergic pathway of the LC as described in previous literature (Marien
et al., 2004).

Using the reconstructed LC pathway of the 50 HCP subjects, we
created a probabilistic atlas in the MNI152 space following the same
approach in (Tang et al., 2018). As shown in Fig. 9, this atlas shows the
support of the non-zero regions are compact and well connected, which
further confirms the consistent trajectories of the reconstructed
pathways.



Fig. 10. Groupwise track filtering results of
the left CST from five representative HCP
subjects. Top row: input fiber bundles from
FOD-based tractography. The white arrow
and ellipse highlight main outliers removed
during the filtering process. Middle row:
filtered fiber bundles generated by our
groupwise filtering algorithm. Bottom row:
filtering results at the whole-streamline level
by adding back pruned points for tracks
retained after the groupwise filtering pro-
cess, i.e., tracks shown in the middle row.
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3.3. Quantitative comparison of corticospinal tract reconstruction from
HCP data

In the third experiment, we applied our groupwise filtering method to
the reconstruction of the corticospinal tract (CST) and quantitatively
compared its performance with two publicly available methods. The data
of 20 HCP subjects from a previous brainstem atlas project (Tang et al.,
2018) was used in this experiment. For each CST bundle, five ROIs in the
brainstem region (Fig. 11 (b)) were manually delineated by an experi-
enced neuroanatomist in (Tang et al., 2018) to guide the accurate
reconstruction of the CST. To evaluate the performance of different track
filtering methods, we used only one brainstem ROI (ROI 1 as shown in
Fig. 11 (a)) in tractography-based reconstruction of the left CST of each
subject. The other four ROIs were used as ground truth to quantitatively
measure the accuracy of filtered tracks by different methods. With the
brainstem ROI as an inclusion ROI, we also used the left precentral gyrus
from the FreeSurfer Aseg labels (Fischl et al., 2002) as the seed region.
For FOD-based tractography, the parameter setting is as follows: step_size
¼ 0.125 mm, angle¼ 4�, and cutoff_threshold¼ 0.025. Each reconstructed
CST contains around 500 streamlines.

From the input CST bundles shown in the first row of Fig. 10, we can
see some frequent outliers in the brainstem area and the lateral pro-
jections to part of the precentral gyrus that do not contribute to the CST.
Following the similar parameter selection strategy presented in the LC
pathway filtering experiment, we used the following parameters: K¼ 19,
Lmin ¼ 0.8, and Lmax ¼ 0.01 for our groupwise filtering algorithm. We
selected a small Lmax to remove streamlines with short false positive
segments (pointed out by arrow in Fig. 10). The high consistency
requirement, Lmin ¼ 0.8, lead the filtering process to produce result with a
high degree of consistency. As shown in the second row of Fig. 10, our
method successfully removed these outliers and generated consistent and
clean bundles that follow the correct anatomy. We also displayed the
filtering results at the whole-stream level by adding back the pruned
points for tracks retained by the filtering algorithm, highlighting the end-
to-end connectivity from the motor cortex to the spinal cord, in the
bottom row of Fig. 10. For the filtered bundle from all subjects, we
calculated the number of tracks and listed their distribution in Table 2,
which will be used to guide parameter tuning in the tools we will be
compare with.

The first publicly available method we compare with is the track
filtering method in the QuickBundles software tool (Garyfallidis et al.,
9

2012), which was applied to the same input bundles as our method. More
specifically, we chose the threshold for distance between curves as 5 mm
and cluster size as 70 streamlines in QuickBundles, which means the
maximum Minimum Average Direct-flip (MDF) distance between curves
within a cluster was limited to 5 mm, and all streamlines belonging to
clusters with less than 70 curves were discarded. With the increase of the
threshold for cluster size, more outliers will be removed but also
potentially valid tracks. For all subjects we counted the number of tracks
in the filtered fiber bundles and fine-tuned the threshold of cluster size
such that the lower end of the track number distribution will be slightly
below our method as listed in Table 2. This suggests we have filtered a
comparable or more outlier tracks with the QuickBundles method as
compared to our method. A comparison of the filtering results from
QuickBundles and our method on an HCP subject is shown in Fig. 11.
While QuickBundles successfully filtered out the outlier tracks projecting
to the inferior and lateral portion of the precentral gyrus, it did not
completely remove the tracks with defects in the brainstem area, which
our method was able to handle consistently across the group. We also
compared our method with the cluster confidence index (CCI) based
streamline filtering (Jordan et al., 2018). Given a streamline, the
streamlines within a certain MDF distance (θcci) are employed as refer-
ences. The CCI qualitatively reflects the reproducibility of individual
streamline according to the overall similarity with its reference, where
the streamline-wise similarity is characterized by the Kcci � th power of
the reciprocal of the MDF distance. We set Kcci ¼ 1, θcci ¼ 5 mm and the
CCI threshold was fine-tuned to be 30 based on the same criteria used
above for QuickBundles, i.e., the lower end of the track number distri-
bution will be slightly below our method to ensure a comparable number
of outliers were removed (Table 2). Qualitatively, a filtering result
example from CCI based method was demonstrated in Fig. 11 (d), where
we can observe that inconsistent streamlines were removed properly at
the cost of removing more valid tracts in comparison with our method.
Both QuickBundles and CCI based filtering method have high computa-
tional efficiency by completing the processing of the 20 CST bundles in
around 10 s.

Two automatic bundle reconstruction approaches, introduced in
(Garyfallidis et al., 2018), and (Zhang et al., 2018) are tested for further
comparisons. These methods used whole brain tractography as the input
and extracted individual fiber bundles based on the precomputed trac-
tography atlases. To apply these methods to the 20 HCP subjects used in
our experiment, we first generated whole brain tractography containing



Fig. 11. A comparison of the filtering results
from our method and other track filtering
methods and two tract reconstruction
methods for the left CST of an HCP subject.
(a) The input bundle reconstructed with one
inclusion ROI (the white disk). (b) The
overlay of the filtered bundle from our
method and the five manually delineated
ROIs (white disks). (c) The overlay of the
filtered bundle form QuickBundles and the
five manually delineated ROIs (white disks).
(d) CCI-based result. The left CST bundle
reconstructed by the atlas-based method in
RecoBundles and SlicerDMRI are displayed
in panel (e) and (f), respectively. The whole
brain tractography, used as the input for both
atlas-based methods, is displayed in the top-
right in (e).
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100k streamlines (top right in Fig. 11 (e)) for each subject using the
FOD-based probabilistic tractography of MRtrix (Tournier et al., 2019).
The following parameter setting was used for the tractography: step_size
¼ 0.125 mm, angle ¼ 4�, and cutoff_threshold ¼ 0.025.

The first atlas based approach, which has been implemented as the
10
RecoBundles tool in Dipy (Garyfallidis et al., 2014), was applied for the
left CST reconstruction. In this approach, the whole brain tractography of
each subject was first registered to a population-average tractography
atlas (Yeh et al., 2018) using the nonlinear registration computed by the
ANTS software (Avants et al., 2008). Following the guidance of



Table 2
Size (num of tracks) of filtered fiber bundles.

Approaches Num of Tracks (mean � std; [min, max])

Proposed method 168.90 � 45.37; [98, 253]
QuickBundles 197.70 � 80.89; [84, 381]
CCI 229.45 � 75.64; [80, 342]
RecoBundles 146.90 � 51.08; [78, 269]
SlicerDMRI 381.10 � 101.26; [220, 611]
SlicerDMRI þ ROI 1 81.75 � 43.17; [25, 210]

Table 1
Hausdorff Distance of Fiber Bundles to Manually Delineated ROIs. The unit of the
distance is in mm.

ROIs Approaches Hausdorff Distance (mean � std mm)

ROI 5 Original CST 9.49 � 2.20
Proposed method 2.33 ± 1.19
QuickBundles 4.76 � 1.92
CCI 3.10 � 1.76
RecoBundles 11.81 � 3.63
SlicerDMRI 16.25 � 3.10
SlicerDMRI þ ROI 1 9.34 � 2.18

ROI 4 Original CST 9.74 � 2.50
Proposed method 3.10 ± 1.56
QuickBundles 5.89 � 2.21
CCI 4.26 � 2.10
RecoBundles 13.19 � 4.02
SlicerDMRI 18.15 � 2.79
SlicerDMRI þ ROI 1 9.32 � 2.20

ROI 3 Original CST 9.86 � 1.86
Proposed method 3.78 ± 1.91
QuickBundles 6.68 � 2.65
CCI 5.41 � 2.07
RecoBundles 13.14 � 3.22
SlicerDMRI 18.75 � 3.30
SlicerDMRI þ ROI 1 9.76 � 1.90

ROI 2 Original CST 7.46 � 1.49
Proposed method 2.48 ± 1.20
QuickBundles 4.92 � 1.99
CCI 3.65 � 1.76
RecoBundles 12.27 � 4.23
SlicerDMRI 16.43 � 3.00
SlicerDMRI þ ROI 1 7.23 � 1.23
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parameter setting in (Garyfallidis et al., 2018), we chose the following
parameters for RecoBundles: cluster_threshold ¼ 15 mm, model_cluster_-
threshold ¼ 5 mm, and reduction_threshold ¼ 20 mm and fine-tuned the
parameter pruning_threshold to be 6 mm so that the lower end of track
number distribution will be slightly below out method (Table 2) because
this method also follows similar techniques from QuickBundles. As
demonstrated in Fig. 11 (e), we can see that the extracted fiber bundle
generally follows the trajectory of CST, but many of the tracks extracted
from the whole brain tractography terminated prematurely before
reaching the end of the medulla. The second atlas-based approach (Zhang
et al., 2018) has been distributed as part of the whitematteranalysis tool in
the SlicerDMRI project (Norton et al., 2017). Both affine and nonrigid
registration (O’Donnell et al., 2012) were computed to warp the tracts to
the atlas space by using tools provided in SlicerDMRI. After that, the
atlas-based method in SlicerDMRI was applied to extract the left CST as
shown in Fig. 11 (f). Compared to the manually delineated ROIs, we can
see a large number of false positives in the brainstem area were included
in this reconstruction.

To quantitatively compare the performance of different methods, we
calculated the distance between the fiber bundles and the other four
manually delineated ROIs (ROI 2–5) not used in bundle reconstruction.
Because all the ROIs were delineated on axial slices, we denote the set of

points in the j-th ROI of the i-th subject asUj
i :Given a fiber bundle of the i-

th subject, we denote its intersection with the corresponding axial slice of

the j-th ROI as the point set Vj
i . For comparison, the Hausdorff distance

dHðUj
i ;V

j
i Þ between these two-point sets was computed for the original
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input bundles, filtered bundles from our method, QuickBundles, and CCI
based reconstruction. These Hausdorff distances indicate the mismatches
between streamlines and the underlying anatomy delineated by ROIs.
Statistics of the Hausdorff distances for each method and ROI were re-
ported in Table 1. Our method, QuickBundles, and CCI based filtering
used the same input bundles (Original CST as listed in Table 1), and the
results show that our algorithm achieved the best performance while all
three methods were able to enhance the fidelity to manually delineated
ROIs. We also estimated the Hausdorff distance between these four ROIs
(ROI 2–5) and CSTs generated by the two atlas-based tools in RecoBun-
dles and SlicerDMRI. The results in Table 1 suggests much larger errors as
compared to the manually delineated labels in the brainstem. This is
consistent with the large number of outliers as illustrated in Fig. 11 (e)
and (f). Because the results from SlicerDMRI contain much larger number
of tracks than other method, we applied manually delineated ROI 1 as an
inclusion region to the bundle reconstructed by SlicerDMRI for a fair
comparison to other methods. This removed many of the outliers and
improved distance measure to other ROIs are listed in Table 1 as Sli-
cerDMRI þ ROI 1, which are comparable to the performance of the input
bundles listed as Original CST. Such anatomical constraints were not
imposed for CSTs generated by RecoBundles because it tends to extract
tracks from the whole brain tractography that terminate early and rarely
reaches ROI 1.

With the manually delineated ground truth labels for brainstem ROIs,
we can also demonstrate the impact of parameters used in our method.
Because the CST bundle has clear end ROIs on both the cortical and
brainstem area, we have selected very high degree related parameters
(large Lmin ¼ 0.8 and smaller Lmax ¼ 0:01). In addition, we have selected
a high affinity parameter (K¼ 19) because the prior knowledge that HCP
subjects are young and healthy. Thus, we focused on the fine tuning of
parameters related to the proximity condition: σ and δ, and examined
their impact on the Hausdorff distances of the reconstructed bundle with
respect to the ground truth labels. As shown in Fig. 12, the colored curves
and associated shaded regions demonstrate the mean and standard de-
viations of the Hausdorff distances from the reconstructed bundle to each
ROI with respect to the change of these two parameters. The black dots
show the number of fiber tracks in the reconstructed bundle under each
parameter value. With the increase of σ, the consistent measure
computed from message passing becomes more insensitive to proximity
conditions and could result in the pruning of more tracks. From Fig. 12
(a), we can see that σ ¼ 6 ~ 8 mm would be good trade-offs. For the δ
parameter, its decrease will lead to stricter stopping criteria and the
elimination of more tracks. We thus set it as δ ¼ 3 mm to ensure a suf-
ficient number of tracks can be retained (around or above 100 for the CST
bundle) in the final reconstruction. Overall, the fine tuning of the pa-
rameters strikes a balance between applying the proximity condition and
ensuring enough number of tracks to effectively represent the geometry
of the fiber bundle.

3.4. Computational cost

In all experiments, our method was implemented in python on a
desktop computer with 3.60 GHz Intel i7-6850K CPUs and 64 GB RAM.
We conducted each experiment ten times to obtain a robust estimation of
running times. The overall processing times of all subjects in the exper-
iments are summarized in Table 3.

4. Discussion and conclusion

In this work we developed a novel groupwise track filtering algorithm
for the consistent reconstruction of fiber bundles from diffusion imaging
data. Our method is based on a flexible definition of groupwise consis-
tency that controls the degree, affinity, and proximity of each track with
respect to other group members. A key element of our algorithm is the
dynamic construction and update of a reference set for each track that
allows the efficient implementation of localized consistency evaluation



Fig. 12. The impact of proximity parameters on CST reconstruction with our groupwise method. The mean and standard deviation of Hausdorff distances (y-axis on
the left side) from the reconstructed bundle to each ROI (2–5) are plotted in (a) and (b) as colored curves and shaded regions with respect to the change of the
parameters σ and δ , respectively. In addition, the number of tracks (y-axis on the right side) in the reconstructed bundle are plotted as black dots with respect to the
change of parameters.

Table 3
Summary of the computing cost in each experiment.

Filtering Task #Subjects Time (mean � std seconds)

Fornix 40 1087.99 � 20.74
LC Pathway 50 991.24 � 17.92
CST 20 535.19 � 9.07

Y. Xia, Y. Shi NeuroImage 221 (2020) 117147
based on message passing and outlier pruning. In summary, the main
contributions of our work are a) Proposed a general conceptual frame-
work for characterizing groupwise consistency of fiber tracks; b) Devel-
oped a novel numerical algorithm that iteratively and locally prunes
away inconsistent portion of each track; c) Demonstrate the general
applicability of the proposed algorithm on fiber bundles with varying
level of artifacts and complexity; d) Performed quantitative comparisons
based on ground truth from manually delineated labels and showed that
groupwise filtering can compensate for the gap in anatomical knowledge
and achieve more faithful reconstruction of fiber bundles.

Accurate bundle reconstruction relies on intensive anatomical priors.
Multiple automated bundle reconstruction methods such as TRACULA
(Yendiki et al., 2011), whitematteranalysis (O’Donnell and Westin, 2007;
Zhang et al., 2018), Recobundles (Garyfallidis et al., 2018), TractSeg
(Wasserthal et al., 2018), WMQL (Wassermann et al., 2016) taking ad-
vantages of the anatomical priors in the form of segmentations of refer-
ence tracts, tractography atlas, and brain parcellation atlases to
effectively and efficiently reconstruct various fiber bundles. With these
methods, the analysis of white matter at the fiber bundle level becomes
very conveniently. While limited attention was paid for considering
whether each individual streamline in the fiber bundles is reliable and
reproducible. From (Rheault et al., 2020), we know that the reproduc-
ibility of streamlines is much more sensitive than which of whole bundle
volume. If we would like to leverage the information at the streamline
level, it is necessary to determine how reliable each streamline is. In
(Jordan et al., 2018), the cluster confidence index is proposed to quan-
titatively indicate the reliability of individual streamline according to its
similarity with neighborhoods. In this work, we further generalize the
reliability concept to be the reproducibility across subjects (groupwise
consistency) and construct a framework to extract the most reproducible
sub-bundle structures.

The underlying assumption for the success of the proposed method is
the existence of certain level of commonness in the fiber bundles across
12
subjects. This is commonly adopted in brain mapping research, where
image or surface registration was first applied to factor out variability
across population before group level analysis. In our experiments, we
warp all fiber trajectories into a common space using nonlinear image
registration (Avants et al., 2008) before the filtering process. This ensures
that individual variability in white matter anatomy is taken into account.
Tractography registration methods proposed in (Garyfallidis et al., 2015;
O’Donnell et al., 2012) could also be useful to align the fiber bundles
before the application of our groupwise filtering algorithm. Without
referring to the images, these registration methods have the potential
advantages of handling the bundle alignment task from patients with
severe white matter atrophy, lesion, and tumor.

In the algorithmic implementation of the proposed groupwise
filtering framework, the parameters used for controlling the degree (Lmin

and Lmax) and affinity measures (K) are typically chosen according to the
prior knowledge with respect to individual fiber bundles. For fiber
bundles without stringent ROIs that determine the end points of the
tracks, we demonstrate a proper choice of the degree parameter can help
prune away spurious portions on both ends of the fiber bundle and
produce a consistent representation of the fornix bundle. This strategy
can be generally applicable to various fiber bundles that project diffu-
sively to broad cortical areas and therefore have high variability in their
tractography based reconstruction. For example, the anterior commis-
sure projects to the broad areas including the middle and inferior tem-
poral gyrus and would benefit from our method to achieve a consistent
reconstruction for comparison across subjects. For fiber bundles that can
be defined with relatively precise end ROIs, we can increase the degree
requirement (larger Lmin and smaller Lmax). Similar to existing track
filtering methods, this will achieve essentially a binary decision (accept/
reject) on each streamline with the assistance of groupwise consistency.
For the affinity measure, our method allows its adjustment for fiber
bundles or cohorts with varying levels of heterogeneity across the group.
For the fornix bundle reconstruction from the ADNI data, we demon-
strated the robustness of the results with respect to the change of the
affinity (K) parameter and the preservation of subject level variability in
the reconstructed fiber bundles. For young and healthy subjects from the
HCP, a higher affinity parameter is selected in our experiments that re-
flects the prior knowledge about the higher degree of similarity in this
cohort. For the proximity condition, the strengthening of its requirement
(smaller δ) will result in the filtering of more artifacts and potentially the
removal of valid tracks from the reconstructed fiber bundles. As
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demonstrated in Fig. 12, we chose proximity parameter by balancing the
removal of artifacts and the preservation of a sufficient number of valid
tracks in the CST bundle. Overall, the parameters for the degree, affinity
and proximity conditions in our method can be selected intuitively
because the clear expectation as explained above about their effects on
the filtered filter bundles.

As a fiber bundle filtering tool, our method depends on the original
inputs and could be affected by the bias issue of tractography algorithms
(Maier-Hein et al., 2017). In our CST experiment, the fiber pathways
emanating from the lateral portion of the precentral gyrus are harder to
reconstruct because the need of crossing regions with complicated fiber
geometry and the dramatic turning angles as they join the descending
portion of the CST at the internal capsule. Fiber tracks from the lateral
portion of the motor cortex thus tend to be severely under-represented
and highly variable across subjects. As a result, our method will filter
out these tracks due to their lack of groupwise consistency. Improve-
ments in tractography algorithms will help provide more balanced rep-
resentation of input fiber bundles to our algorithm and hence generate
better reconstruction results. For example, the Anatomically Constrained
Tractography (ACT) (Smith et al., 2012) can improve tractography
quality and hence the downstream filtering algorithms. Recently
(Rheault et al., 2019), proposed a tractography algorithm to mitigate the
bias in the fiber bundle reconstruction by introducing anatomical and
orientational prior knowledge for tractography. For future work, we will
investigate such tractography tools and examine their impact on our
groupwise filtering method. In addition, it will be highly valuable to
perform validations against ground truth provided by tracer injection
data in other anatomical regions such as the internal capsule for the CST
bundle (Innocenti et al., 2018).

In summary, we developed an iterative algorithm to prune away
inconsistent artifacts of fiber tracks for the reconstruction of fiber bundles
with groupwise consistency. Results from our method can improve the
comparability of bundle-based representations of white matter connec-
tivity and hence potentially provide increased power in the detection of
group differences. In future work, we will apply our method to perform
more extensive validations and study the impact of groupwise filtering on
the detection of connectivity changes of critical fiber bundles in brain
disorder such as the Alzheimer’s disease.
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